Skip to main content
Log in

Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to −2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  2. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. 110, 6446 (2010).

    Article  Google Scholar 

  3. Z. S. Li, W. J. Luo, M. L. Zhang, J. Y. Feng, and Z. G. Zou, Energy Environ. Sci. 6, 347 (2013).

    Article  Google Scholar 

  4. W. Wang, W. Zhang, S. Meng, L. Jia, M. Tan, C. Hao, Y. Liang, J. Wang, and B. Zou, Electron. Mater. Lett. 12, 753 (2016).

    Article  Google Scholar 

  5. H. Kim, S.-H. Kim, K. Y. Ko, H. Kim, J. Kim, J. Oh, and H.-B.-R. Lee, Electron. Mater. Lett. 12, 404 (2016).

    Article  Google Scholar 

  6. P. C. Dai, W. Li, J. Xie, Y. M. He, J. Thorne, G. McMahon, J. H. Zhan, and D. W. Wang, Angew. Chem. Int. Ed. 53, 13493 (2014).

    Article  Google Scholar 

  7. C. L. Li, T. Hisatomi, O. Watanabe, M. Nakabayashi, N. Shibata, K. Domen, and J. J. Delaunay, Energy Environ. Sci. 8, 1493 (2015).

    Article  Google Scholar 

  8. S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, Adv. Funct. Mater. 24, 303 (2014).

    Article  Google Scholar 

  9. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, Nat. Mater. 10, 456 (2011).

    Article  Google Scholar 

  10. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley, and M. Gratzel, Energy Environ. Sci. 5, 8673 (2012).

    Article  Google Scholar 

  11. C. G. Morales-Guio, S. D. Tilley, H. Vrubel, M. Gratzel, and X. L. Hu, Nat. Commun. 5 (2014).

  12. B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, J. Am. Chem. Soc. 135, 1057 (2013).

  13. S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, Science 344, 1005 (2014).

    Article  Google Scholar 

  14. B. Seger, D. S. Tilley, T. Pedersen, P. C. K. Vesborg, O. Hansen, M. Gratzel, and I. Chorkendorff, RSC Adv. 3, 25902 (2013).

    Article  Google Scholar 

  15. B. Seger, S. D. Tilley, T. Pedersen, P. C. K. Vesborg, O. Hansen, M. Gratzel, and I. Chorkendorff, J. Mater. Chem. A 1, 15089 (2013).

    Article  Google Scholar 

  16. G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, and A. Vilan, Accounts Chem. Res. 35, 121 (2002).

    Article  Google Scholar 

  17. S. Ruhle, M. Greenshtein, S. G. Chen, A. Merson, H. Pizem, C. S. Sukenik, D. Cahen, and A. Zaban, J. Phys. Chem. B 109, 18907 (2005).

    Article  Google Scholar 

  18. R. Hengerer, L. Kavan, P. Krtil, and M. Gratzel, J. Electrochem. Soc. 147, 1467 (2000).

    Article  Google Scholar 

  19. C. W. Kim, S. J. Yeob, H.-M. Cheng, and Y. S. Kang, Energy Environ. Sci. 8, 3636 (2015).

    Google Scholar 

  20. Y. F. Lu, D. J. Choi, J. Nelson, O. B. Yang, and B. A. Parkinson, J. Electrochem. Soc. 153, E131 (2006).

  21. A. Paracchino, J. C. Brauer, J. E. Moser, E. Thimsen, and M. Graetzel, J. Phys. Chem. C 116, 7341 (2012).

    Article  Google Scholar 

  22. D. M. King, X. H. Du, A. S. Cavanagh, and A. Weimer, Nanotechnology 19, 445401 (2008).

    Article  Google Scholar 

  23. H. Gerische, J. Chim. Phys. Pcb 70, 584 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeon Sik Jung or Jihun Oh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Song, J.T., Jang, H.S. et al. Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction. Electron. Mater. Lett. 13, 57–65 (2017). https://doi.org/10.1007/s13391-017-6316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6316-1

Keywords

Navigation